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Abstract—Micro object detection remains a significant chal-
lenge in computer vision due to limitations in feature extraction
and computational efficiency for small-scale targets. This paper
introduces YOLOv12s, a deep learning-based architecture opti-
mized for micro object detection, combining advancements in
attention mechanisms and lightweight network design. The pro-
posed model integrates a Residual Efficient Layer Aggregation
Network (R-ELAN) backbone and an Area Attention Module to
enhance feature representation while reducing redundant compu-
tations. Key innovations include Flash Attention for accelerated
inference on GPU/CPU architectures, 7×7 Separable Convolu-
tions to expand receptive fields without increasing parameters
and Feature Map Segmentation for precise localization of micro-
objects.

Experimental results on a small sample of the xView
satellite imagery dataset shows a training mAP@0.5 of 0.41
and training mAP@[0.5:0.95] of 0.19. For the validation part
mAP@0.5 of 0.194 and mAP@[0.5:0.95] of 0.399 was achieved.
Testing mAP@0.5 and mAP@[0.5:0.95] were 0.102 and 0.235
respectively. The model was trained, validated and tested on 4
classes - boat, building, plane and vehicle. It gave good and
satisfactory results on 3 of the 4 classes - boat, building and
plane. The vehicle class very tiny and therefore it requires further
future work for getting better and promising results.

Index Terms—Micro Object, YOLOv12s, Deep Learning, At-
tention Mechanisms, Computer Vision, CNN

I. INTRODUCTION

Detecting objects is a key problem domain in computer
vision, which generally entails discovering and localizing
objects within a 2D image or 3D video. Object detection is a
critical component for many areas where correctly identifying
the objects location is essential, such as autonomous vehicles,
surveillance, medical imaging, and industrial automation, to
name just a few. Although the field has seen significant
advancement, especially using deep learning methods, the
detection of micro-objects—small-scale objects with fine de-
tails—remains a difficult problem area which is weakened due
to object size, low resolution and noise [19]; [4].

A. Importance of Micro-Object Detection

Micro-object detection is simply necessary for domains
where a high amount of precision and accuracy is required.
Some of the most relevant domains where micro-object de-
tection is critical are: Medical Imaging: The detection of
tumors, microbleeds, and cellular abnormalities in radiological
images (i.e. X-rays, MRIs, and CT scans) [19]. Increas-
ing the detection of those types of medical imaging data
is accomplished using various techniques, including deep
learning based segmentation models. Remote Sensing: The
ability to identify small-scale objects like vehicles, buildings,
and wildlife in aerial and satellite imagery; However, the
metadata from high resolution satellite images often suffers
from scale variance issues that prevents effective micro-object
detection. Security and Surveillance: Observing small objects
in complicated contexts mainly for security and anomaly
detection. Recent advances in small object detection models
have greatly improved real-world accuracy in security [18].
Industrial Inspection: Quality control in large and industrial-
scale manufacturing situations to ensure defects are detected in
products. Micro-object detection models have improved real-
world identification of defects for example in semiconductor
manufacturing and microscopic assessments [5].

B. Recent Developments in Deep Learning for Micro-Object
Detection

Traditional object detection methods, such as Region-based
Convolutional Neural Network (R-CNN) [16], Feature Pyra-
mid Networks (FPN), and Single Shot MultiBox Detector
(SSD) [10], laid foundational work for object detection and
class recognition. However, there has been a significant in-
crease in deep learning-based methods, especially convo-
lutional neural network (CNN) and transformer-based ap-
proaches, that have greatly improved recognition and detection
accuracy for micro-object detection work [3].These methods
include (YOLO) You Only Look Once. The YOLO family
of models has established accurate real-time/object detec-
tion processing. Several YOLO modifications/models have



been created that are specialized for micro-object detection:
YOLOv3: Incorporates multi-scale feature extraction able to
detect small objects specifically [15]. YOLOv4: Builds on
previous work with CSPDarknet53 and enhancements with
spatial pyramid pooling (SPP) [1]. YOLOv5 is an extremely
effective object detection system that used adaptive anchor
tuning and a corresponding set of focus layers [6]. YOLOv7:
is a state-of-the-art version of YOLO which utilized advanced
feature fusion based on the new Extended Efficient Layer
Aggregation Networks (E-ELAN) [19]. YOLO for Medical
Object Detection: More recent research has examined YOLO
for micro-object such as identifying small brain abnormalities
or retinal damage, showing great potential for medical applica-
tions [13]. Furthermore, super-resolution can improve YOLO
object detection of micro-objects [2].Micro-object detection
can be performed at low resolution through super-resolution
networks situated in the detection pipelines.

C. Challenges in Micro-Object Detection

There are still challenges in detecting micro-objects, al-
though it has advanced. Scale variability: The scale, that is
associated with micro-object size often makes distinguishing
the micro-object from the background noise very difficult
[18]. Low resolution: Object feature extractors that do exist,
such as traditional object detection systems, have a limit to
the identification of an object occupying a few pixels and
will require image enhancement techniques from imaging
at higher resolution [5]. Occlusion and Clutter: Identifying
distinct patterns among overlapping objects, especially in
denser environments, creates obstacles in accurate segmenta-
tion and classification. Computational Constraints: For real-
time detection, computational efficiency remains a challenge
especially in environments where numerous devices could
be constrained by factors such as localization or embedded
systems. improve [4]. Generalization Across Domains: In most
cases, the performance of micro-object detection models is
contingent on a specific dataset. On occasion, previous or
alternative datasets will require domain adaptation to assist
with improved generalization. [7]

D. Future Directions

Researchers are now trying to improve micro-office de-
tection through the use of Hybrid models that combine
Convolutional Neural Networks (CNNs) and transformers to
further improve features representation layered throughout the
decision detect micro-object scenarios or comparable self-
identifying dimensional paradigms [3]., Generative Adversar-
ial Network (GAN) models for data-augmentation methods
on synthetic data to improve detection performance when
capacity is low [18]., Improved research in Edge Computing
devices to display improvements in micro object detection in
IoT and embedded systems where low latency elements are
crucial [14], Self-supervised Learning techniques to mitigate
the demands of limited labeled micro-object datasets [7].

II. RELATED WORKS

A paper published in 2022 Developed MMOC-Net, which
is a two-stage cascade network that combines U-Net and Full-
Resolution Network (FRN) with Residual Atrous Spatial Pyra-
mid Pooling (R-ASPP) in favor of cerebral microbleed (CMB)
segmentation in SWI-MRI. It has accomplished 87.93% DSC
and 90.69% F2-score, which addressed the challenges of small
size (¡10mm) and visual similarity to anatomical structures
[19].In 2024,research was conducted that Provides research
synthesis of YOLO variants that is used in medical detec-
tion (2018-2023), which highlights their adaptation for small
anatomical structures and restraints in handling class imbal-
ance and low-contrast targets [13].A work in 2021 has been
proposed that Analyzed obstacles in optical remote sensing:
high intra-class variance, complex backgrounds, and scale
variations. Diagnosed multi-scale feature fusion and context-
aware networks as fundamental measures [4].In 2024, a group
of academics conducted research on In-depth review of deep
learning approaches, accentuating feature pyramid networks,
super-resolution techniques, and hybrid loss functions to tackle
low-resolution and class imbalance [18].In 2023, a paper was
published which Emphasized advancements in attention mech-
anisms and transformer-based architectures for small object
localization, with targeted approach on medical and satellite
imaging [8].A work published in 2015, Presented Faster R-
CNN with Region Proposal Network (RPN), facilitate near
real-time detection by sharing undulation features between
proposal generation and detection stages [16].A work in
2017 has been proposed that Recommended Feature Pyramid
Networks (FPN), utilizing intrinsic CNN hierarchies to create
multi-scale feature maps. Upgraded COCO AP by 2.3 points
over single-scale baselines [9].In 2016, a paper was published
which Outlined Single Shot Multibox Detector (SSD), inte-
grating predictions from multiple feature maps for competent
multi-scale detection without region proposals [10].In 2020,
a study was conducted on Vision Transformers (ViTs) val-
idated scalability to high-resolution medical images, despite
the fact that computational demands remain arduous for 3D
datasets [3].A work in 2022 has been proposed that discussed
Auto-associative learning approach for microscopy detection,
reducing annotation dependency through contrastive learning
forthcoming methodology for medical micro-object detec-
tion [11].One of the possibilities listed includes YOLOv12
embedded channel-wise attention and dynamic convolutions,
achieving 63.8 AP on COCO-small subset - relevant for real-
time medical applications, In 2025 [17].

III. PROPOSED MODEL

A. Architecture

YOLOv12 small [17] consists of three primary structural
components.
Backbone: R-ELAN (Residual Efficient Layer Aggregation

Network) - It processes input images through multiple
convolutional layers. This layer features specialized C3k2
blocks with kernel size 2 for efficient feature extraction. It



incorporates Area Attention modules(A2C2f) that distribute
computational resources selectively. It also has Progressive
spatial dimension reduction (640→320→160→80→40→20)
with corresponding channel expansion
(64→128→256→512→1024).

Neck: Feature Fusion with Area Attention - This layer
integrates features across multiple scales through
bidirectional pathways. It employs Flash Attention for
memory-efficient feature processing. It uses depth wise
separable convolutions(7x7) to reduce computational
demands. The Neck creates robust multi-scale representations
through skip connections and feature aggregation.

Head: Detection and Prediction - This is the final layer of
YOLOv12 small architecture. It generates final predictions
using feature maps from three different scales (P3, P4, P5).
This layer produces bounding box coordinates, class
probabilities, and confidence scores. It implements
multi-scale feature fusion to handle objects of varying sizes.
It utilizes specialized loss functions that balance localization
and classification objectives.

B. Algorithm

The algorithmic process of YOLOv12 small follows a
streamlined detection pipeline that emphasizes both accuracy
and computational efficiency.

Input Processing and Feature Extraction - The Input images
(640×640×3) are processed through the backbone’s initial
convolutional layers. The backbone progressively extracts
multi-scale features through R-ELAN blocks. Area Attention
modules (A2C2f) selectively focus computational resources
on informative regions. Multiple feature maps at different
resolutions are generated, representing various semantic
levels.

Feature Fusion and Enhancement - The neck combines
features from different scales through upsampling and
concatenation.Flash Attention mechanism processes
segmented feature maps more efficiently:

Attention(Q,K, V ) = SoftMax
(
QK⊤
√
dk

)
V

Where Q, K, V are query, key, and value matrices derived
from segmented feature maps. Depthwise separable
convolutions refine spatial information with minimal
parameter overhead. Skip connections between backbone and
neck preserve gradient flow and spatial information.

Object Detection and Prediction - The head processes refined
feature maps at three different scales (P3, P4, P5). For each
position in these feature maps, the model predicts Bounding
box coordinates relative to grid cells, Objectness scores
indicating likelihood of object presence and Class
probabilities across all defined categories.

Multi-scale feature fusion enhances detection performance
across object sizes. The model’s loss function integrates
localization, classification, and confidence components:

L = λcoord
∑(

(x̂− x)2 + (ŷ − y)2
)
+ λobj

∑
(Ĉ − C)2 + . . .

Where coordinates (x̂, ŷ) and confidence Ĉ represent
predictions.

C. Block Diagram

Fig. 1: Block Diagram

D. Performance

Fig. 2: Latency(ms) and FLOPs(G)

Fig. 3: Parameters(M) and CPU ONNX(ms)



IV. RESULTS ANALYSIS

A. Table

Class Images Instances Box (p) r mAP50 mAP50-95
all 8 2020 0.446 0.386 0.399 0.194
boat 4 159 0.475 0.239 0.264 0.067
plane 6 513 0.580 0.678 0.679 0.380
building 3 48 0.545 0.604 0.582 0.310
vehicle 5 1300 0.1838 0.0238 0.0714 0.0191

validation metrics for different classes

Class Images Instances Box (p) r mAP50 mAP50-95
all 8 2020 0.446 0.386 0.399 0.194
boat 4 159 0.475 0.239 0.264 0.067
plane 6 513 0.580 0.678 0.679 0.380
building 3 48 0.545 0.604 0.582 0.310
vehicle 5 1300 0.1838 0.0238 0.0714 0.0191

testing metrics for different classes

mAP Precision Recall

Dataset @[0.5:0.95] @0.5 Boat Building Plane Vehicle Boat Building Plane Vehicle

Validation 0.194 0.399 0.47541 0.58021 0.54543 0.18279 0.23899 0.67836 0.60417 0.023846
Testing 0.102 0.235 0.38824 0.20476 0.69798 0.35511 0.19666 0.44949 0.48148 0.013749

B. Graph

Fig. 4: Graph for change in metrics with epochs

C. Sample Dataset

Fig. 5: Train Image 1 Fig. 6: Train Image 2

Fig. 7: Train Image 3 Fig. 8: Train Image 4

Fig. 9: Validation Image 1
Fig. 10: Validation Image 2

Fig. 11: Validation Image 3

Fig. 12: Validation Image 4

Fig. 13: Testing Image 1
Fig. 14: Testing Image 2



Fig. 15: Testing Image 3
Fig. 16: Testing Image 4

D. Comparison with other people’s works

Micro object detection has emerged as a challenging yet
crucial subfield of computer vision, with distinctive
characteristics that differentiate it from general object
detection. This section compares our approach with existing
methods in the literature, highlighting key innovations,
limitations, and performance metrics across different
methodologies for detecting extremely small objects.

Methodological Approaches to Micro Object Detection

Scale-Aware Methods - Scale-aware approaches represent a
significant category of methods addressing micro object
detection. These techniques typically modify feature pyramid
networks (FPNs) to better handle extremely small-scale
objects. Standard FPNs can negatively impact tiny object
detection, leading researchers to introduce statistically
estimated fusion factors to control how deep and shallow
features are combined [8].Other works have introduced more
sophisticated scale-aware mechanisms. The misalignment
between deep and shallow features was addressed by
developing an Image Pyramid Transformation Module
(IPGT) [8]. Some researchers have combined feature-fusion
with additional techniques such as attention mechanisms to
enhance detection of extremely small objects across different
feature map layers [8].

Attention-Based Methods - Attention mechanisms have
proven particularly effective for micro object detection by
suppressing background noise and highlighting relevant
features. Multiple approaches incorporate attention modules
to enhance feature representation of small objects.

Recurrent Neural Networks (RNNs) were utilized with
attention to focus on relevant image areas [8]. The
Attention-Guided Balanced Pyramid (ABP) adaptively fuses
features at different pyramid levels using a two-part
attention-based sub-network [8]. Several works have adapted
channel attention mechanisms based on
Squeeze-and-Excitation (SE) blocks to highlight channels
relevant to detection while suppressing noise [8].

In the context of micro-scale crack detection, a self-attention
mechanism was introduced after each pooling step to allow
the model to focus on specific regions of feature maps,
particularly helping identify micro-cracks that might
otherwise be missed [12]. This approach demonstrated an
average IOU of 0.511 for all micro cracks and 0.631 for
larger micro cracks (> 4 µm) [12].

Focus-and-Detect Methods - Several approaches employ a
two-stage detection strategy where the first stage identifies
regions of interest and the second stage performs detailed
analysis. This focus-and-detect methodology has shown
promising results for micro object detection by allowing the
model to concentrate computational resources on areas likely
to contain microscopic objects.

A common implementation divides the original image into
tiles and then selects specific tiles for fine detection.
However, regular grid sampling can lead to errors when
objects span multiple tiles [8]. More sophisticated
approaches use coarse cluster proposals to guide fine
detection, with selected tiles being adjusted before resizing
to maintain scale consistency [8].

Data Augmentation Strategies - Data augmentation
techniques specifically designed for micro object detection
address the challenge of limited training data. These methods
typically involve duplicating images with small objects and
performing copy-paste operations to increase the
representation of micro instances in the training set
[8].However, simple duplication can introduce noise,
requiring semantic masks to precisely crop objects.
Furthermore, in domains such as aerial imagery, objects tend
to occupy specific areas, making random placement
counterproductive [8]. More advanced approaches
incorporate semantic segmentation networks to extract
environmental context and properly handle object scale [8].

Self-Supervised Learning Approaches - A notable innovation
in the field is the development of self-supervised learning
techniques that can detect microscopic objects without
extensive labeled datasets. LodeSTAR (Localization and
detection from Symmetries, Translations And Rotations)
exploits roto-translational symmetries to enable training on
extremely small datasets—down to a single image—without
ground truth [11].LodeSTAR achieves sub-pixel root mean
square error (RMSE) and outperforms traditional methods in
accuracy, particularly when analyzing challenging
experimental data containing densely packed cells or noisy
backgrounds [11]. This represents a significant advancement
for micro object detection in fields like microscopy, where
labeled data is scarce and difficult to generate.

V. CONCLUSION

This research introduces YOLOv12s, a novel deep
learning-based architecture optimized for micro-object



detection. By integrating the Residual Efficient Layer
Aggregation Network (R-ELAN) backbone and Area
Attention Module, the model effectively enhances feature
representation and computational efficiency. Key innovations,
such as Flash Attention and 7×7 separable convolutions,
enable precise localization of small-scale objects while
maintaining real-time performance. Experimental results on
the xView satellite imagery dataset demonstrated satisfactory
performance on three out of four object classes (boat,
building, and plane), achieving a training mAP@0.5 of 0.41
and testing mAP@[0.5:0.95] of 0.235. However, the vehicle
class posed challenges due to its extremely small size,
underscoring the need for further refinement. Overall,
YOLOv12s bridges the gap between accuracy and efficiency
in micro-object detection, making it suitable for applications
in domains like remote sensing, medical imaging, and
industrial inspection.

VI. FUTURE WORKS

Future research will focus on addressing the limitations
observed in detecting extremely small objects, such as
vehicles in this study. Potential directions include:

1) Hybrid Architectures - Exploring hybrid models
combining convolutional neural networks (CNNs) with
transformers to enhance feature representation for
micro-scale objects.

2) Self-Supervised Learning - Incorporating
self-supervised techniques to mitigate reliance on
extensive labeled datasets, particularly for challenging
classes like vehicles.

3) Domain Adaptation - Enhancing model generalization
across different datasets by leveraging transfer learning
and domain adaptation techniques to tackle diverse
micro-object detection scenarios.

These advancements aim to further improve the robustness
and scalability of YOLOv12s for real-world applications
involving micro-object detection.
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